DM

Bài 3.Tìm x để \(\sqrt{ }\) có nghĩa

a)\(\sqrt{\dfrac{3}{x+7}}\) 

b)\(\sqrt{\dfrac{-2}{5-x}}\) 

c)\(\sqrt{x^2-7x+10}\) 

d)\(\sqrt{x^2-8x+10}\) 

e)\(\sqrt{9x^2+1}\)

DM
18 tháng 9 2021 lúc 15:30

Tìm x để căn có nghĩa ak mn giúp e với ak

Bình luận (0)
NM
18 tháng 9 2021 lúc 15:35

\(a,ĐK:\dfrac{3}{x+7}\ge0\Leftrightarrow x+7>0\left(3>0;x+7\ne0\right)\Leftrightarrow x>-7\\ b,ĐK:\dfrac{-2}{5-x}\ge0\Leftrightarrow5-x< 0\left(2-< 0;5-x\ne0\right)\Leftrightarrow x>5\\ c,ĐK:x^2-7x+10\ge0\Leftrightarrow\left(x-5\right)\left(x-2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5\ge0\\x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5\le0\\x-2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)

\(d,ĐK:x^2-8x+10\ge0\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4-\sqrt{6}\ge0\\x-4+\sqrt{6}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4-\sqrt{6}\le0\\x-4+\sqrt{6}\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge4+\sqrt{6}\\x\ge4-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)

\(e,ĐK:9x^2+1\ge0\Leftrightarrow x\in R\left(9x^2+1\ge1>0\right)\)

Bình luận (0)
LL
18 tháng 9 2021 lúc 15:37

a) \(ĐK:x+7>0\Leftrightarrow x>-7\)

b) \(ĐK:5-x< 0\Leftrightarrow x>5\)

c) \(ĐK:x^2-7x+10\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x-5\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)

d) \(ĐK:x^2-8x+10\ge0\)

\(\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)

e) Do \(9x^2+1\ge1>0\)

Nên biểu thức được xác định với mọi x

Bình luận (0)