Bài 1. Cho tam giác ABC cân tại A. Gọi I là trung điểm của BCa) Chứng minh AI là tia phân giác góc Ab) Chứng minh AI vuông BCc) Kẻ IH vuông góc với AB (H thuộc AB), kẻ IK vuông góc với AB (K thuộcAC). Chứng minh IH = IK.d) Trên tia đối của tia IA lấy điểm D sao cho IA = ID. Chứng minh AB // CD
Cho tam giác ABC (AB<AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA.
a) Chứng minh tam giác MAB=tam giác MDC.
b) Kẻ AH vuông góc với BC tại H, kẻ DK vuông góc với BC tại K. Chứng minh: AH=DK.
c) Trên các đoạn thẳng AB và CD lần lượt lấy điểm E và F sao cho AE=DF. Chứng minh: 3 điểm E, M, F thẳng hàng.
Mai mình cần ý, vẽ hình giúp mình, mình cảm ơn ạa
Cho IHK có IH < IK. Trên cạnh IK lấy M sao cho IM = IH, tia phân giác của HIK cắt cạnh HK tại N a) Chứng minh HN = MN b) Gọi P là giao điểm của 2 đường thẳng IH và MN. Chứng minh PHN =KMN và IPK cân c) Chứng minh tia IN vuông góc với đoạn thẳng PK. Mọi người giúp em với
Cho đoạn thẳng BC, gọi I là trung điểm của BC. Trên đường trung trực của đoạn thẳng BC lấy điểm A ( A khác I)
a) Chứng minh rằng tam giác AIB= tam giác AIC (làm rồi)
b) Kẻ IH vuông góc với AB, IK vuông góc với AC. Chứng minh rằng IH=IK (làm rồi)
c) Qua B kẻ Bx//AC cắt AI kéo dài tại E. Chứng minh BC là phân giác của góc ABE
d) Chứng minh EA là tia phân giác của góc BAC
e) KI cắt BE tại M .Chứng minh góc BIM = góc IAC
Các bạn giúp mình nha!
THANK!
Bài 1. Cho tam giác ABC cân tại A có BAC = 45o. Từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt đường thẳng BC tại M. Trên tia đối của tia AM lấy điểm N sao cho AN = BM. Chứng minh:
a) Chứng minh: ΔMAC cân.
b) Chứng minh: AMC = BAC = 45o
c) Chứng minh: ΔABM = ΔCAN.
d) Chứng minh: ΔMCN vuông cân
Bài 2. Cho ΔABC có góc A nhọn. Kẻ tia Ax ⊥ AB (tia AC nằm giữa Ax và AB ). Kẻ tia Ay ⊥ AC (tia AB nằm giữa Ay và AC). Lấy điểm E và F lần lượt thuộc tia Ax và Ay sao cho AE = AB và
a) Chứng minh: BF = CE.
b) Gọi M và N lần lượt là trung điểm của BF và CE. Chứng minh: ΔAMN vuông cân.
Bài 3. Trên cạnh BC của ΔABC lấy 2 điểm E và F sao cho BE = CF. Qua E và F vẽ các đường thẳng song song với BA chúng cắt cạnh AC tại G và H. Qua E vẽ đường thẳng song song với AC cắt AB tại D.
a) Chứng minh: AD = GE.
b) Chứng minh: ΔBDE = ΔFHC.
c) Chứng minh: AB = GE + FH.
Bài 4. Cho tam giác ABC vuông tại A và AB = 2AC. Gọi E là trung điểm của AB. Trên tia đối của tia AC lấy điểm D sao cho AB = AD. Chứng minh rằng:
a) BC = DE.
b) BC ⊥ DE.
Bài 5. Cho ΔABC vuông cân tại A, M là trung điểm cạnh BC, E là điểm nằm giữa M và C. Vẽ BH ⊥ AE tại H và CK ⊥ AE tại K. CMR:
a) AM ⊥ BC
b) BH = AK
c) ΔMBH = ΔMAK
d) ΔMHK vuông cân.
Cho tam giác ABC vuông tại A .Đường phân giác của góc B cắt AC tại E.Kẻ EH vuông góc với BC (H thuộc BC) . a/ Chứng minh tam giác ABE = tam giác HBE b/ Chứng minh BE là đường trung trực của đoạn thẳng AH. c/ Gọi I là giao điểm của Be và AH .Cho AB = 10 cm, AH = 16 cm và G là trọng tâm của tam giác ABH. Tính BG. d/ Gọi K là giao điểm của AB và EH. Chứng minh tam giác BCK cân.
Bài 2 (4 điểm) Cho tam giác ABC cân tại C. Trên cạnh CA lấy điểm E, trên tia đối của tia BC lấy điểm D sao cho AE= BD . Kẻ EI, DJ vuông góc với AB (I, J thuộc đường thẳng AB). 1, Chứng minh tam giác AEI bằng tam giác BDJ. 2, Gọi M là giao điểm của AB và ED, chứng minh tam giác EIM bằng tam giác DJM. 3, Khi góc ACB bằng 90 và CA bằng 6cm, tính AB (trường hợp này chỉ dùng cho câu 3). 4, Đường thẳng vuông góc với CA tại A cắt tia phân giác của góc ACB tại N, chứng minh rằng: đường thẳng NM là đường trung trực của đoạn thẳng DE