NC

Bài 2:   Cho tam giác cân ABC (AB = AC) . Trên đường thẳng đi qua đỉnh A và song song với BC lấy hai điểm M và N sao cho A là trung điểm của MN ( M, B cùng thuộc nửa mặt phẳng bờ AC). Gọi H, I, K lần lượt là trung điểm của các cạnh MB, BC, CN.

        a/ Tứ giác MNCB là hình gì? Vì sao?

        b/ Chứng minh tứ giác AHIK là hình thoi.

TT
9 tháng 1 2022 lúc 20:11

Ta có: MN // AB (gt). \(\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{ABC}\\\widehat{NAC}=\widehat{ACB}\end{matrix}\right.\) (so le trong).

Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân).

\(\Rightarrow\widehat{MAB}=\widehat{NAC.}\)

Xét tam giác AMB và tam giác ANC có:

+ AM = AN (A là trung điểm của MN).

+ AB = AC (gt).

\(\widehat{MAB}=\widehat{NAC}\left(cmt\right).\)

\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).

Xét tứ giác MNCB có: \(\text{MN // CB}\) (gt).

\(\Rightarrow\) Tứ giác MNCB là hình thang.

Mà \(\widehat{M}=\widehat{N}\) (Tam giác AMB = Tam giác ANC).

\(\Rightarrow\) Tứ giác MNCB là hình thang cân.

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
DT
Xem chi tiết
LH
Xem chi tiết
PH
Xem chi tiết
PT
Xem chi tiết
IB
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết