H24

Bài 2: Cho tam giác ABC cân tại A. kẻ phân giác BE, CF của các góc B và C.
a) Chứng minh tam giác AEF cân
b) Chứng minh BFC = CEB
c) Chứng minh BFEC là hình thang cân
Giúp mik với nhé

 

MN
31 tháng 7 2021 lúc 15:13

a) Ta có tam giác ABC cân tại A

=> góc B= góc C

=> 1/2 góc C= 1/2 góc B

=> ABE=ACF

Xét tam giác ABE và tam giác AFC có:

AB=AC(gt)

A(chung)

ABE=ACF(cmt)

=> tam giac ABE= tam giác ACF(g.c.g)

=> AF=AE

=> tam giác AEF cân tại A

b)Ta có góc B= góc C

=> 1/2 góc B=1/2 góc C=>EBC=FCB

Theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)

=> BE=CF

Xét tam giác BFC vá tam giác CEB có

BE=CF(tam giác ABE= tam giác ACF)

FCB=ECB(cmt)

BC(chung)

=> tam giác BFC= tam giác CEB(c.g.c0

c) Tam giác AFE cân tại A

=>góc AFE=(180*-A)/2

Tam giác ABC cân tại B=>ABC=(180*-A)/2

=> ABC=AFE

=> FE//BC(1)

Ta có: FB=AB-AF

          EC=AC-AE

          AB=AC

        AF=AE

=> FB=EC(2)

Từ (1)(2)=> tứ giác BFEC là hình thang cân

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
VT
Xem chi tiết
MO
Xem chi tiết
LT
Xem chi tiết
NP
Xem chi tiết
PB
Xem chi tiết
PL
Xem chi tiết
CM
Xem chi tiết
NN
Xem chi tiết