bài 1:hai giá sách lớp 8A có 400 cuốn. nếu chuyển từ giá thứ nhất sang giá thứ hai 20 cuốn thì số sách ở hai giá bằng nhau. tính số sách lúc đầu của mỗi giá?
bài 2: cho tam giác ABC vuông tại A(AB<AC) đường cao AH
a) chứng minh tạm giắc ABC đồng dạng với tam giác HBA
cho AB= 6cm, BC=10cm. tính AH,CH
b) đường phân giác góc AHB cắt AB ở D, phân giác góc AHC cắt AC tại E. chứng minh BD.EH=AE.HD
ét ô ét 👁👄👁💦
Bài 1:
Gọi số sách của giá thứ nhất lúc đầu là x(cuốn)(0<x<400)
thì số sách của giá thứ hai lúc đầu là 400-x(cuốn)
số sách của giá thứ nhất về sau là x-20(cuốn)
số sách của giá thứ hai về sau là 400-x+20=-x+420
Theo bài ra ta có phương trình:
x-20=-x+420
⇔2x=440
⇔ x=220(t/m)
Vậy số sách của giá thứ nhất lúc đầu là 220 cuốn;giá thứ hai là 400-220=180 cuốn
BÀI 2:
a) Xét ΔABC và ΔHBA có:
\(\widehat{BAC}=\widehat{AHB}\)=90o(gt)
\(\widehat{B}chung\)
⇒ΔABC ~ ΔHBA (g-g)
Áp dụng định lí Py-ta-go vào ΔABC vuông tại A ta có:
AC2=\(\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{64}=8\left(cm\right)\)
Ta có :ΔABC ~ ΔHBA(cmt)
⇒\(\dfrac{AB}{BH}=\)\(\dfrac{BC}{AB}=\dfrac{AC}{AH}hay\dfrac{6}{BH}=\dfrac{10}{6}=\dfrac{8}{AH}\)⇒\(\left\{{}\begin{matrix}BH=\dfrac{6.6}{10}=3,6\left(cm\right)\\AH=\dfrac{6.8}{10}=4,8\left(cm\right)\end{matrix}\right.\)
Ta có:CH =BC-BH=10-3,6=6,4(cm)
b) Ta có: HD là p/g \(\widehat{AHB}\)⇒\(\widehat{BHD}=\widehat{AHD}=\dfrac{90}{2}=45^o\)
HE là p/g \(\widehat{AHC}\Rightarrow\widehat{AHE}=\widehat{EHC}=\dfrac{90}{2}=45^o\)
Xét ΔBHD vàΔAHE có:
\(\widehat{BHD}=\widehat{AHE}=45^{o^{ }}\left(cmt\right)\)
\(\widehat{B}=\widehat{HAE}\)(2 góc phụ nhau)
⇒ΔBHD ~ΔAHE(g-g)
⇒\(\dfrac{BD}{AE}=\dfrac{HD}{EH}\Rightarrow BD.EH=AE.HD\left(đpcm\right)\)