Bài 1:
Gọi UCLN của n+1 và 3n+4 là d.
Suy ra:n+1 chia hết cho d
3n+4 chia hết cho d
Suy ra:3n+3 chia hết cho d
3n+4 chia hết cho d
Suy ra:(3n+4)-(3n+3) chia het cho d
Suy ra: 1 chia hết cho d
Vậy d=1.
VẬY 2 SỐ n+1 VÀ 3n+4 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU>
mk chỉ làm BT1 thui ^^ (tick cho mk ná)
BT1:
gọi ƯCLN của ( n+1;3n+4) là d (d E N)
ta phải chứng minh d=1
ta có n+1 và 3n + 4 đều chia hết cho d => 4*(n+1) và 1*(3n+4 ) chia hết cho d => 4n +4 và 3n+4 chia hết cho d
ta có (4n+4) - ( 3n+4 ) chia hết cho d
= 1 chia hết cho d => d là Ư(1)=1 => d=1 và ƯCLN ( n+1;3n+4) =1. => n+1 và 3n+4 là 2 số nguyên tố cùng nhau
vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau