Ôn tập Đường tròn

ND

Bài 1:Cho đường tròn (O;R), đường kính AB, dây cung BC=R 

a, Tính các cạnh và các góc chưa biết của tam giác ABC theo R 

b, Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn (O) ở D

CM: OD là đường trung trực của AC

tam giác ADC là hình gì? Vì sao?

c, CM: DC là tiếp tuyến của đường tròn (O)

d, Đường thẳng OD cắt đường tròn (O) tại I. Cm: I là tâm đường tròn nội tiếp tam giác ADC

 

CC
10 tháng 12 2020 lúc 22:26

b) Gọi OD ⊥ AC tại I ( I thuộc OD)

Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)

Do đó OD // CB

Xét △ABC, có:

OD// CB (cmt)

O là trung điểm AB ( AB là đường kính)

Do đó OI là đường trung bình ABC

=>I là trung điểm AC

Có: OD ⊥  AC(gt) , I trung điểm AC (cmt) (I thuộc OD)

Nên OD là đường trung trực của AC

c) 

Xét t/giác AOC, có:

AO=OC (=R)

Do đó t/giác AOC cân tại O

Mà OI ⊥  AC

Nên OI cũng là đường phân giác góc AOC

=> AOI = COI

Xét t/giác ADO và t/giác DOC, có:

OD chung

AOI = COI (cmt)

OA=OC (=R)

Do đó t/giác ADO = t/giác CDO (c-g-c)

=> DAO = DCO

Mà DAO= 90

Nên DCO = 90

Có C thuộc (O) ( dây cung BC)

Nên CD là tiếp tuyến

Bình luận (1)
CC
11 tháng 12 2020 lúc 13:38

a) Xét △ABC, có:

AB là đường kính của (O) (gt)

Do đó △ABC vuông tại C

Xét ABC (C=90), có:

 +\(AC^2+CB^2=AB^2\left(Pytago\right)\) \(^{ }\Rightarrow AC^2=AB^2-CB^2\)

=> AC = \(R\sqrt{3}\)

\(sin_A=\dfrac{CB}{AB}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow A=30^o\)

+ A + B = 90 (△ABC vuông tại C)

30 + B = 90

B = 90 - 30

B= 60

Bình luận (0)
NK
12 tháng 5 2022 lúc 19:31

b) Gọi OD ⊥ AC tại I ( I thuộc OD)

Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)

Do đó OD // CB

Xét △ABC, có:

OD// CB (cmt)

O là trung điểm AB ( AB là đường kính)

Do đó OI là đường trung bình ABC

=>I là trung điểm AC

Có: OD ⊥  AC(gt) , I trung điểm AC (cmt) (I thuộc OD)

Nên OD là đường trung trực của AC

c) 

Xét t/giác AOC, có:

AO=OC (=R)

Do đó t/giác AOC cân tại O

Mà OI ⊥  AC

Nên OI cũng là đường phân giác góc AOC

=> AOI = COI

Xét t/giác ADO và t/giác DOC, có:

OD chung

AOI = COI (cmt)

OA=OC (=R)

Do đó t/giác ADO = t/giác CDO (c-g-c)

=> DAO = DCO

Mà DAO= 90

Nên DCO = 90

Có C thuộc (O) ( dây cung BC)

Nên CD là tiếp tuyến

Bình luận (0)
H24
2 tháng 6 2022 lúc 7:55

b) Gọi OD ⊥ AC tại I ( I thuộc OD)

Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)

Do đó OD // CB

Xét △ABC, có:

OD// CB (cmt)

O là trung điểm AB ( AB là đường kính)

Do đó OI là đường trung bình ABC

=>I là trung điểm AC

Có: OD ⊥  AC(gt) , I trung điểm AC (cmt) (I thuộc OD)

Nên OD là đường trung trực của AC

c) 

Xét t/giác AOC, có:

AO=OC (=R)

Do đó t/giác AOC cân tại O

Mà OI ⊥  AC

Nên OI cũng là đường phân giác góc AOC

=> AOI = COI

Xét t/giác ADO và t/giác DOC, có:

OD chung

AOI = COI (cmt)

OA=OC (=R)

Do đó t/giác ADO = t/giác CDO (c-g-c)

=> DAO = DCO

Mà DAO= 90

Nên DCO = 90

Có C thuộc (O) ( dây cung BC)

Nên CD là tiếp tuyến

 

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
NS
Xem chi tiết
LD
Xem chi tiết
HQ
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
MB
Xem chi tiết