Cho tam giác ABC có trung tuyến AM. Qua O là trung điểm của AM kẻ đường thẳng d sao cho d cắt cả 2 cạnh AB, AC. Gọi H, I, K lần lượt là chân các đường vuông góc kẻ từ A, B, C đến d. Cmr BK+CI=2AH
cho tam giác ABC , đường trung tuyến AM . Gọi O là trung điểm của AM. qua O kẻ đường thẳng d cắt các cạnh AB và AC. Gọi AA' , BB' , CC' là các đường vuông góc kẻ từ A,B,C đến đường thẳng d . CHỨNG MINH: AA'= BB'+CC'/2
Cho tam giác ABC, đường trung tuyến AM. Gọi 0 là trung điểm của AM. Qua O kẻ đường thẳng d cắt các cạnh AB, AC. Gọi AA', BB', CC' là các đường vuông góc kể từ A, B, C đến đường thẳng d.
Chứng minh rằng: AA' = (BB' + CC') / 2
Cho tam giác ABC, đường trung tuyến AM. Gọi O là trung điểm của AM. Qua O kẻ đường thẳng d cắt các cạnh AB và AC. Gọi AA', BB', CC' là các đường vuông góc từ A, B, C đến đường thẳng d. Chứng minh rằng \(AA'=\frac{BB'+CC'}{2}\)
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
Câu 2 : Cho tam giác ABC vuông tại A có AC = 2AB , kẻ đường trung tuyên AM . Gọi D là điểm đổi xứng của A qua M . Gọi I, K lần lượt là trung điểm của các cạnh BD ; AC . Gọi E là điểm đối xứng của M qua K.Đường thẳng AE cắt đường thẳng CD tại F. Chứng minh tứ giác ABIK là hình vuông và ba điểm K, M, I thẳng hàng b. Chứng minh tứ giác AMCE là hình thoi . a. Chứng minh tứ giác ABDC là hình chữ nhật
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
cho tam giác ABC vuông tại A biết AB = 6cm, AC = 8cm, đường trung tuyến AM. Gọi D,E lần lượt là chân đường vuông góc kẻ từ M đến AB, AC.
a) Chứng ming tứ giác ADME là hình chữ nhật.
b) Tính diện tích hình chữ nhật ADME.
c) Gọi N là điểm đối xứng với M qua E. Chứng minh tứ giác AMCN là hình thoi.
d) Đường thẳng be cắt cạnh NC tại P. Tính tỉ số \(\frac{NP}{PC}\)
cho tam giác abc vuông tại A, kẻ AM là đường trung tuyến của tam giác. trên tia AM lấy điểm D sao cho MD=AM. GỌI K,I lần lượt là chân các đường vuông góc kẻ từ B,C đến AD.
a. c/m: ABDC là hình chữ nhật,
b.c/m BI//CK
c. gọiE là giao điểm của AB và CI, đường thẳng qua M và // Ce cắt BE tại F. c/m: FE=FB. Gọi H là trung điểm ủa CK. c/m F,M,H thẳng hàng.