Bài 3: Rút gọn phân thức

HA

Bài 10. Rút gọn rồi tính giá trị các biểu thức

a) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)với a=4, b=-5, c=6

b) \(\frac{16x^2-40xy}{8x^2-24xy}\)với \(\frac{x}{y}\)=\(\frac{10}{3}\)

c) \(\frac{\frac{x^2+xy+y^2}{x+y}-\frac{x^2-xy+y^2}{x-y}}{x-y-\frac{x^2}{x+y}}\)với x=9, y=10

AA
27 tháng 10 2018 lúc 21:27

a)\(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-b+c\right)}=\dfrac{a+b-c}{a-b+c}\)Giá trị của biểu thức trên tại \(a=4;b=-5;c=6\) là:

\(\dfrac{4-5-6}{4-\left(-5\right)+6}=-\dfrac{7}{15}\)

Bình luận (0)
NT
30 tháng 10 2022 lúc 22:50

b: \(=\dfrac{8x\left(2x-5y\right)}{8x\left(x-3y\right)}=\dfrac{2x-5y}{x-3y}\)

Đặt x/10=y/3=k

=>x=10k; y=3k

\(A=\dfrac{2\cdot10k-5\cdot3k}{10k-3\cdot3k}=\dfrac{5k}{k}=5\)

c: \(C=\left(\dfrac{x^3-y^3-x^3-y^3}{\left(x+y\right)\left(x-y\right)}\right):\dfrac{x^2-y^2-x^2}{x+y}\)

\(=\dfrac{-2y^3}{\left(x+y\right)\left(x-y\right)}\cdot\dfrac{x+y}{-y^2}=\dfrac{2y}{x-y}\)

\(=\dfrac{20}{9-10}=-20\)

Bình luận (0)

Các câu hỏi tương tự
VP
Xem chi tiết
NL
Xem chi tiết
DL
Xem chi tiết
TN
Xem chi tiết
LN
Xem chi tiết
TC
Xem chi tiết
MT
Xem chi tiết
SD
Xem chi tiết
ND
Xem chi tiết