TH

bài 1 tính nhanh 

a) A=\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)

b) B=\(\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{57}+...+\frac{3}{49\cdot51}\)

c) C=\(\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+\frac{5^2}{16\cdot21}+\frac{5^2}{21\cdot26}+\frac{5^2}{26\cdot31}\)

d) D=\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

e) E=\(\frac{3}{5\cdot11}+\frac{5}{11\cdot21}+\frac{7}{21\cdot35}+\frac{9}{35\cdot53}\)

f) F=\(\frac{2}{15}+\frac{2}{35}+\frac{2}{99}+\frac{4}{77}\)

giải chi tiết giúp mình nhé thank you very much

CD
8 tháng 5 2015 lúc 12:07

A=2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

A= 2 - 1/3 + 1/3 - 1/5 + 1/5 - ... + 2/99 - 2/101

A = 2 - 2/101 = 200/101

B = 3-1/3+1/3-1/5+1/5-...+3/49-3/51

B = 3-3/51(tự tính nhé)

C = 5(5/1.6+5/6.11+5/11.16+....+5/26-5/31

C = 5(5-1/31)(tự tính)

D rút gon cho 2 rồi 3D , sau đó 5(3/.... tương tự các cách làm trên)

2E nhân lên rồi giải giống trên

3F Rồi nhân 4/77 và rút gọn thì tính được

Bình luận (0)
XT
16 tháng 7 2015 lúc 19:53

a, A= \(\frac{1}{1}\)\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+......+\(\frac{1}{99}\)-\(\frac{1}{100}\)

A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+(-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....-\(\frac{1}{99}\)+\(\frac{1}{99}\))

A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+0

A=1-\(\frac{1}{100}\)=\(\frac{100}{100}\)-\(\frac{1}{100}\)=\(\frac{99}{100}\)

Bình luận (0)
LH
25 tháng 7 2015 lúc 8:50

a) A= \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\) 

=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

=\(1-\frac{1}{100}=\frac{99}{100}\)

b) \(\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{49.51}\)

=\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{49.51}\right).\frac{3}{2}\)

=\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right).\frac{3}{2}\)

\(\left(1-\frac{1}{50}\right).\frac{3}{2}=\frac{49}{50}.\frac{3}{2}=\frac{147}{100}\)

c) \(C=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)

\(\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right).5\)

\(\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right).5\) 

\(\left(1-\frac{1}{31}\right).5=\frac{30}{31}.5=\frac{150}{31}\)

Mấy bài còn lại mik đang phải nháp đã. Bạn thông cảm cho mik

Bình luận (0)
NH
2 tháng 6 2016 lúc 14:44

a)A=100/101

b)B=25/17

c)C=150/31

d)D=5/14

e)E=24/265

f)F=26/99

Bình luận (0)
TL
17 tháng 6 2016 lúc 15:34

\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.50}\right)\)

=\(\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(\frac{3}{2}.\left(1-\frac{1}{51}\right)=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)

Bình luận (0)
VD
22 tháng 8 2016 lúc 16:06

a,\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

     \(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

     \(=1-\frac{1}{101}=\frac{101-1}{101}=\frac{100}{101}\)

b,\(B=\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{49.51}\)

\(\Rightarrow\frac{2}{3}B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{49.51}\)

             \(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\)\(=1-\frac{1}{51}=\frac{51-1}{51}=\frac{50}{51}\)

\(\Rightarrow B=\frac{50}{51}.\frac{3}{2}=\frac{25.1}{17.1}=\frac{25}{17}\)           

c,\(C=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)       

\(\Rightarrow\frac{C}{5}=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}=\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\)

           \(=1-\frac{1}{31}=\frac{31-1}{31}=\frac{30}{31}\)

\(\Rightarrow C=\frac{30.5}{31}=\frac{150}{31}\)

d, D = \(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

       =\(\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(\Rightarrow\frac{3}{5}D=\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+...+\frac{3}{700}\)

             \(=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\)

             \(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\)   

             \(=\frac{1}{4}-\frac{1}{28}=\frac{7-1}{28}=\frac{6}{28}=\frac{3}{14}\)

\(\Rightarrow D=\frac{3}{14}.\frac{5}{3}=\frac{1.5}{14.1}=\frac{5}{14}\)

e,\(E=\frac{3}{5.11}+\frac{5}{11.21}+\frac{7}{21.35}+\frac{9}{35.53}\)

\(\Rightarrow2E=\frac{6}{5.11}+\frac{10}{11.21}+\frac{14}{21.35}+\frac{18}{35.53}=\)\(\frac{1}{5}-\frac{1}{11}+\frac{1}{11}-\frac{1}{21}+\frac{1}{21}-\frac{1}{35}+\frac{1}{35}-\frac{1}{53}\)

           \(=\frac{1}{5}-\frac{1}{53}=\frac{53-5}{53.5}=\frac{48}{265}\)

\(\Rightarrow E=\frac{48}{265.2}=\frac{24}{265}\)

f,\(F=\frac{2}{15}+\frac{2}{35}+\frac{2}{99}+\frac{4}{77}\)

     \(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{9.11}+\frac{4}{7.11}\)

     \(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{7}-\frac{1}{11}\)

      \(=\frac{1}{3}+\frac{1}{9}-\frac{2}{11}=\frac{3+1}{9}-\frac{2}{11}=\frac{4}{9}-\frac{2}{11}=\frac{44-18}{99}=\frac{26}{99}\)

đó là toàn bộ bài nhak, làm nhiều khiến mình đau lưng quá ~~~

Bình luận (0)
KT
22 tháng 9 2016 lúc 16:29

nguyệt hằng làm sai phần c vì

Bình luận (0)
KT
22 tháng 9 2016 lúc 16:30

số 2 cố thể là số n khác 0

Bình luận (0)
KA
6 tháng 5 2020 lúc 8:41

a, \(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(A=1-\frac{1}{101}=\frac{100}{101}\)

b, \(B=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(B=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(B=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(B=\frac{3}{2}.\left(1-\frac{1}{51}\right)\)

\(B=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)

c, \(C=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)

\(C=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\right)\)

\(C=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)

\(C=5.\left(1-\frac{1}{31}\right)\)

\(C=5.\frac{30}{31}=\frac{150}{31}\)

d, \(D=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

\(D=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(D=\frac{5}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)

\(D=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(D=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)\)

\(D=\frac{5}{3}.\frac{3}{14}=\frac{5}{14}\)

e, \(E=\frac{3}{5.11}+\frac{5}{11.21}+\frac{7}{21.35}+\frac{9}{35.53}\)

\(E=\frac{1}{2}.\left(\frac{6}{5.11}+\frac{10}{11.21}+\frac{14}{21.35}+\frac{18}{35.53}\right)\)

\(E=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{11}+\frac{1}{11}-\frac{1}{21}+\frac{1}{21}-\frac{1}{35}+\frac{1}{35}-\frac{1}{53}\right)\)

\(E=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{53}\right)\)

\(E=\frac{1}{2}.\frac{48}{265}=\frac{24}{265}\)

f, \(F=\frac{2}{15}+\frac{2}{35}+\frac{2}{99}+\frac{4}{77}\)

\(F=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{9.11}+\frac{4}{7.11}\)

\(F=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{7}-\frac{1}{11}\)

\(F=\frac{1}{3}+\frac{1}{9}-\frac{2}{11}=\frac{26}{99}\)

Học tốt !

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
SY
Xem chi tiết
NK
Xem chi tiết
HH
Xem chi tiết
KK
Xem chi tiết
TA
Xem chi tiết
AN
Xem chi tiết
IN
Xem chi tiết
PI
Xem chi tiết
DM
Xem chi tiết