Bài 3: Hàm số liên tục

TT

Bài 1 : tính giới hạn của

\(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{\left(1-x\right)^2}\)

Bài 2: chứng minh rằng

\(\sqrt{x^2+px+q}=\left|x+\frac{p}{2}\right|+\varepsilon\left(x\right)\) với \(\lim\limits_{x\rightarrow+\infty}\varepsilon\left(x\right)=0\)

Bài 3: tìm a và b sao cho

\(\lim\limits_{x\rightarrow+\infty}\left[\sqrt{9x^2-4x+3}-\left(ax+b\right)\right]=0\)

AH
3 tháng 4 2020 lúc 17:46

Bài 1:
\(\lim\limits _{x\to 1}\frac{4x^6-5x^5+x}{(1-x)^2}=\lim\limits _{x\to 1}\frac{x(x-1)^2(4x^3+3x^2+2x+1)}{(1-x)^2}\)

\(=\lim\limits _{x\to 1}x(4x^3+3x^2+2x+1)=1(4.1^3+3.1^2+2.1+1)=10\)

Bình luận (0)
 Khách vãng lai đã xóa
AH
3 tháng 4 2020 lúc 17:56

Bài 3:

\(\lim\limits _{x\to +\infty}[\sqrt{9x^2-4x+3}-(ax+b)]=0\)

\(\Rightarrow \lim\limits _{x\to +\infty}\frac{\sqrt{9x^2-4x+3}-(ax+b)}{x}=0\)

\(\Leftrightarrow \lim\limits _{x\to +\infty}\left(\sqrt{9-\frac{4}{x}+\frac{3}{x^2}}-a+\frac{b}{x}\right)=0\)

\(\Leftrightarrow a=3\)

Thay $a=3$ vào đk ban đầu:

\(\lim\limits _{x\to +\infty}[\sqrt{9x^2-4x+3}-3x-b]=0\)

\(\Leftrightarrow \lim\limits _{x\to +\infty} (\sqrt{9x^2-4x+3}-3x)=b\)

\(\Leftrightarrow \lim\limits _{x\to +\infty}\frac{-4x+3}{\sqrt{9x^2-4x+3}+3x}=b\)

\(\Leftrightarrow \lim\limits _{x\to +\infty}\frac{-4+\frac{3}{x}}{\sqrt{9-\frac{4}{x}+\frac{3}{x}}+3}=b\)

\(\Leftrightarrow \frac{-4}{6}=b\Leftrightarrow b=-\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
AH
3 tháng 4 2020 lúc 18:02

Bài 2:

\(\lim\limits _{x\to +\infty}\varepsilon(x)=\lim\limits _{x\to +\infty}[\sqrt{x^2+px+q}-|x+\frac{p}{2}|]=\lim\limits _{x\to +\infty}\frac{x^2+px+q-(x^2+px+\frac{p^2}{4})}{\sqrt{x^2+px+q}+|x+\frac{p}{2}|}\)

\(=\lim\limits _{x\to +\infty}\frac{q-\frac{p^2}{4}}{\sqrt{x^2+px+q}+|x+\frac{p}{2}|}=0\) do \(\sqrt{x^2+px+q}+|x+\frac{p}{2}|\to +\infty \)

\(\Rightarrow \sqrt{x^2+px+q}=|x+\frac{p}{2}|+\varepsilon (x)\) với \(\lim\limits _{x\to +\infty}\varepsilon (x)=0\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LN
Xem chi tiết
HC
Xem chi tiết
SK
Xem chi tiết
HC
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết