Bài 1: Tính giá trị các biểu thức sau tại: |x| = \(\dfrac {1}{3}\); |y| = 1
a) A= 2x2 - 3x + 5 b) B= 2x2 - 3xy + y2
Bài 2: Tính giá trị các biểu thức A sau biết x + y +1 = 0:
A= x (x + y) - y2 (x + y) + x2 - y2 + 2 (x + y) + 3
Bài 3: Cho x.y.z = 2 và x + y + z = 0. Tính giá trị biểu thức:
A= (x + y)(y + z)(z + x)
Bài 4: Tìm các giá trị của các biến để các biểu thức sau có giá trị bằng 0:
a) |2x - \(\dfrac {1}{3}\)| - \(\dfrac {1}{3}\) b) |2x - \(\dfrac {1}{3}
\)| - \(\dfrac {1}{3}\) c) |3x + 2\(\dfrac {1}{3}
\)| + |y + 2| = 0 d) (x - 2)2 + (2x - y + 1)2 = 0
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
Bài 2:
\(x+y+1=0\Rightarrow x+y=-1\)
A = \(x\)(\(x+y\)) - y2.(\(x+y\)) + \(x^2\) - y2 + 2(\(x+y\)) + 3
Thay \(x\) + y = -1 vào biểu thức A ta có:
A = \(x\).( -1) - y2 .(-1) + \(x^2\) - y2 + 2(-1) + 3
A = -\(x\) + y2 + \(x^2\) - y2 - 2 + 3
A = \(x^2\) - \(x\) + 1
Bài 4:
a; |2\(x\) - \(\dfrac{1}{3}\)| - \(\dfrac{1}{3}\) = 0
|2\(x-\dfrac{1}{3}\)| = \(\dfrac{1}{3}\)
\(\left[{}\begin{matrix}2x-\dfrac{1}{3}=-\dfrac{1}{3}\\2x-\dfrac{1}{3}=\dfrac{1}{3}\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=0\\2x=\dfrac{2}{3}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\) {0; \(\dfrac{1}{3}\)}
Bài 4
c; |3\(x\)\(\) +2\(\dfrac{1}{3}\)| +|y + 2| = 0
\(\left\{{}\begin{matrix}3x+2\dfrac{1}{3}=0\\y+2=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x=-\dfrac{7}{3}\\y=-2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=-\dfrac{7}{9}\\y=-2\end{matrix}\right.\)
Vậy (\(x;y\)) = (-\(\dfrac{7}{9}\); -2)
Bài 4 d
(\(x-2\))2 + (2\(x-y+1\))2 = 0
\(\left\{{}\begin{matrix}x-2=0\\2x-y+1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=2\\2x-y+1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=2\\2.2-y+1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=2\\5-y=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
Vậy (\(x;y\)) = (2; 5)