NG

Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99

Bài 2. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

NT
3 tháng 10 2018 lúc 12:37

bài 1:

B = 1 + (2 + 3 + 4 + ... + 98 + 99).

Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949

Khi đó B = 1 + 4949 = 4950

bài 2:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Bình luận (0)

Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99

=> B= \((99+1).99:2=4950\)

Vậy .....

Bài 2. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

=> 3A= 1.2.3+2.3.3+3.4.3+....+n.(n+1).3

=> 3A= 1.2.3+2.3.(4-1)+3.4.(5-2)+....+n.(n+1).\([\left(n+3\right).\left(n-1\right)]\)

=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+n.(n+1).(n+3)-(n-1) .n.(n+1)

=>3A=n.(n+1).(n+3)

=>A=\(\frac{n.\left(n+1\right).\left(n+3\right)}{3}\)

Vậy ...

Chúc bạn hok tốt

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PS
Xem chi tiết
TN
Xem chi tiết
NL
Xem chi tiết
PA
Xem chi tiết
NA
Xem chi tiết
TH
Xem chi tiết
DM
Xem chi tiết
NG
Xem chi tiết
NL
Xem chi tiết