1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
2. \(y^2+1\ge1>0;2x^2+x+1>0\) với mọi x; y
=> x + 5 > 0
=> \(y^2+1=\frac{x+5}{2x^2+x+1}\ge1\)
<=> \(x+5\ge2x^2+x+1\)
<=> \(x^2\le2\)
Vì x nguyên => x = 0 ; x = 1; x = -1
Với x = 0 ta có: \(y^2+1=5\Leftrightarrow y=\pm2\)
Với x = 1 ta có: \(y^2+1=\frac{3}{2}\)loại vì y nguyên
Với x = -1 ta có: \(y^2+1=2\Leftrightarrow y=\pm1\)
Vậy Phương trình có 4 nghiệm:...
\(\left(\sqrt{4-a^2}+\sqrt{4-b^2}\right)^2\le2\left(4-a^2+4-b^2\right)\le2\left(8-\frac{\left(a+b\right)^2}{2}\right)=12\)
=> \(\sqrt{4-a^2}+\sqrt{4-b^2}\le2\sqrt{3}\)
và: \(0< a,b\le2\)
Ta có:
\(P=\frac{a}{\sqrt{4-a^2}}+\frac{b}{\sqrt{4-b^2}}\)
\(=\frac{a}{\sqrt{\left(2-a\right)\left(2+a\right)}}+\frac{b}{\sqrt{\left(2-b\right)\left(2+b\right)}}\)
\(=\frac{2a\sqrt{3}}{2\sqrt{3\left(2-a\right)\left(2+a\right)}}+\frac{2b\sqrt{3}}{2\sqrt{3\left(2-b\right)\left(2+b\right)}}\)
\(\ge\frac{2a\sqrt{3}}{3\left(2-a\right)+2+a}+\frac{2b\sqrt{3}}{3\left(2-b\right)+\left(2+b\right)}\)
\(=\sqrt{3}\left(\frac{a}{4-a}+\frac{b}{4-b}\right)\)
\(=\sqrt{3}\left(-2+\frac{4}{4-a}+\frac{4}{4-b}\right)\)
\(\ge\sqrt{3}\left(-2+\frac{\left(2+2\right)^2}{4-a+4-b}\right)\)
\(=\frac{2}{\sqrt{3}}\)
Dấu "=" xảy ra <=> a = b = 1
GTNN của P = \(\frac{2}{\sqrt{3}}\)
TUI LỚP 5 ĐỪNG HỎI TUI OK
đáp án: :]]] ????????????????%@##!#$$$%^!@#$%^&*())(