Lời giải:
Áp dụng BĐT Bunhiacopxky với $x>0; 1-x> 0$ ta có:
\(\left(\frac{2}{1-x}+\frac{1}{x}\right)[(1-x)+x]\geq (\sqrt{2}+1)^2\)
\(\Rightarrow \frac{2}{1-x}+\frac{1}{x}\geq \frac{(\sqrt{2}+1)^2}{1-x+x}=(\sqrt{2}+1)^2\)
Vậy \(y_{\min}=(\sqrt{2}+1)^2\)
Dấu bằng xảy ra khi \(\frac{\sqrt{2}}{1-x}=\frac{1}{x}\Rightarrow x=\sqrt{2}-1\)