Ôn tập hệ hai phương trình bậc nhất hai ẩn

NH

Bài 1: Tìm a để hệ pt vô nghiệm: \(\left\{{}\begin{matrix}\sqrt{2}x+ay=-1\\5\sqrt{2}x+3\sqrt{3}y=1\end{matrix}\right.\)

Bài 2: Tìm m và k để hệ pt vô số nghiệm: \(\left\{{}\begin{matrix}2x-3y=2\\mx+ky=4\end{matrix}\right.\)

Bài 3: Chứng minh (D): y=2x+1 ; (\(D_1\)): 2y+x=7 và (\(D_2\)): y=x+2 đồng quy

Bài 4: Tìm m để hệ pt có 1 nghiệm duy nhất: \(\left\{{}\begin{matrix}3+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)

Bài 5: a) Dùng phương pháp hình học để ktra kết quả của phương trình: \(\left\{{}\begin{matrix}x-3y=0\\2x-y=5\end{matrix}\right.\)

b) Tìm tọa độ của (d): y=x+1 và (d'): y=3x-2 bằng đồ thị và bằng phép toán

Mọi người giúp em với ạ!!!!!!!!!

NL
25 tháng 3 2020 lúc 0:40

Bài 1 : https://hoc24.vn/hoi-dap/question/944344.html

Bài 2 : https://hoc24.vn/hoi-dap/question/944356.html

Bài 3 :

- Xét phương trình hoành độ giao điểm (d), (d2) ta được :

\(2x+1=x+2\)

=> \(2x-x=2-1\)

=> \(x=1\)

- Thay x =1 vào phương trình (d) ta được : \(y=2+1=3\)

- Thay x = 1, y = 3 vào phương trình (d1) ta được :

\(3.2+1=7\) ( luôn đúng )

=> x = 1, y = 3 là nghiệm của phương trình .

Vậy 3 đường thẳng trên đồng quy tại 1 điểm ( 1; 3 )

Bài 4 :

- Để phương trình có nghiệm duy nhất thì : \(\frac{3}{m-1}\ne\frac{m}{2}\)

=> \(m\left(m-1\right)\ne6\)

=> \(m^2-m-6\ne0\)

=> \(\left(m-\frac{1}{2}\right)^2-\frac{25}{4}\ne0\)

=> \(\left[{}\begin{matrix}m-\frac{1}{2}\ne\sqrt{\frac{25}{4}}\\m-\frac{1}{2}\ne-\sqrt{\frac{25}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}m\ne\sqrt{\frac{25}{4}}+\frac{1}{2}\\m\ne-\sqrt{\frac{25}{4}}+\frac{1}{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}m\ne3\\m\ne-2\end{matrix}\right.\)

Vậy để hệ phương trình có duy nhất 1 nghiệm thì \(m\ne-2,m\ne3\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
LM
Xem chi tiết
TH
Xem chi tiết
LV
Xem chi tiết
TP
Xem chi tiết
TH
Xem chi tiết
CD
Xem chi tiết
SG
Xem chi tiết
KV
Xem chi tiết