DV

Bài 1 : Rút gọn biểu thức                                                                                  

a. A = \(\left(a-2\right):\left\{\dfrac{a^2-b^2}{a^3+b^3}.\left[a-\dfrac{a^2+b^2}{b}:\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\right]\right\}=\dfrac{a-2}{a}\)        

b. B = \(1:\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\right)\)     

2. Chứng minh đẳng thức :

a. \(\left(\dfrac{6a+1}{a^2-6a}+\dfrac{6a-1}{a^2+6a}\right).\dfrac{a^2-36}{a^2+1}=\dfrac{12}{a}\)

b.  \(\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\right]=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)

3. Chứng minh biểu thức không phụ thuộc vào biến :

a. A = \(\left(\dfrac{x}{x-y}-\dfrac{y}{x+y}\right):\left(\dfrac{x+y}{x-y}-\dfrac{2xy}{x^2-y^2}\right)\)

b. \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

 

 


Các câu hỏi tương tự
NA
Xem chi tiết
MV
Xem chi tiết
DV
Xem chi tiết
L2
Xem chi tiết
KG
Xem chi tiết
MV
Xem chi tiết
BS
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết