H24

bài 1: Phân tích đa thức thành nhân tử 

a, (xy-1)2+ (x+y)2

b, a2+2a2+2a+1 

c, (1+2a).(1-2a)-a.(a+2).(a-2)

d, a2+b2-a2b2+ab-a-b

e, xy.(x+y)-yz.(y+z)+xz(x-z)

f, xyz-(xy+yz+zx)+(x+y+z)-1

giúp em với ạ ! em đang cần gấp 

 

NM
22 tháng 10 2021 lúc 21:16

\(a,=\left(xy-1-x-y\right)\left(xy-1+x+y\right)\\ b,Sửa:a^3+2a^2+2a+1\\ =a^3+a^2+a^2+a+a+1=\left(a+1\right)\left(a^2+a+1\right)\\ c,=1-4a^2-a\left(a^2-4\right)=1-4a^2-a^3+4a\\ =\left(1-a\right)\left(1+a+a^2\right)+4a\left(1-a\right)\\ =\left(1-a\right)\left(1+5a+a^2\right)\\ d,=\left(a^2-a^2b^2\right)+\left(b^2-b\right)+\left(ab-a\right)\\ =a^2\left(1-b\right)\left(1+b\right)+b\left(b-1\right)+a\left(b-1\right)\\ =\left(b-1\right)\left(-a^2-ab+b+a\right)\\ =\left(b-1\right)\left(b-1\right)\left(a+b\right)\left(1-a\right)\)

\(e,=x^2y+xy^2-yz\left(y+z\right)+x^2z-xz^2\\ =\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\\ =x^2\left(y+z\right)+x\left(y-z\right)\left(y+z\right)-yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy-xz-yz\right)\\ =\left(y+z\right)\left(x+y\right)\left(x-z\right)\)

\(f,=xyz-xy-yz-xz+x+y+z-1\\ =xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(x-1\right)\\ =\left(z-1\right)\left(xy-y-x+1\right)=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TN
Xem chi tiết
NN
Xem chi tiết
BH
Xem chi tiết
BM
Xem chi tiết
BF
Xem chi tiết
TC
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết