NQ

bài 1: Phân tích đa thức thành nhân tử:

   a) (x^2+2x).(x^2+2x+4)+3

ND
24 tháng 9 2023 lúc 21:41

\(a)\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

Để đơn giản hơn cũng như là dễ nhìn hơn thì ta :

Đặt : \(x^2+2x=a\)

Do đó ta có đa thức :

\(a.\left(a+4\right)+3=a^2+4a+3\)

\(=a^2+a+3a+3\)

\(=a\left(a+1\right)+3\left(a+1\right)\)

\(=\left(a+1\right)\left(a+3\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)

 

Bình luận (0)
LP
24 tháng 9 2023 lúc 21:48

Hoặc bạn có thể đặt \(x^2+2x+2=t\)

Thì \(P=\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

\(P=\left(t-2\right)\left(t+2\right)+3\)

\(P=t^2-4+3\)

\(P=t^2-1\)

\(P=\left(t-1\right)\left(t+1\right)\)

\(P=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(P=\left(x+1\right)^2\left(x^2+2x+3\right)\)

Bình luận (0)
NT
24 tháng 9 2023 lúc 21:45

a) \(\left(x^2+2x\right).\left(x^2+2x+4\right)+3\)

\(=x^4+4x^3+4x^2+4x^3+16x^2+16x\)

\(=x^4+8x^3+20x^2+16x\)

\(=\left(x^4+8x^3+20x^2+16x\right)+3\)

\(=x^4+8x^3+20x^2+16x+3\)

 

Bình luận (0)