Chương I - Hệ thức lượng trong tam giác vuông

TN

Bài 1: Cho tam giác MNP vuông tại M, đường cao MK. Biết MN = \(\sqrt{5}\), NP = 3. Tính các tỉ số lượng giác của góc NMK.

NT
26 tháng 8 2021 lúc 22:56

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP^2=3^2-\left(\sqrt{5}\right)^2=4\)

hay MP=2cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MK là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MN^2=NK\cdot NP\\MK\cdot NP=MN\cdot MP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}KN=\dfrac{5}{9}\left(cm\right)\\MK=\dfrac{2\sqrt{5}}{3}\left(cm\right)\end{matrix}\right.\)

Xét ΔNMK vuông tại K có 

\(\sin\widehat{NMK}=\dfrac{KN}{MN}=\dfrac{\sqrt{5}}{9}\)

\(\cos\widehat{NMK}=\dfrac{MK}{MN}=\dfrac{2}{3}\)

\(\tan\widehat{NMK}=\dfrac{KN}{KM}=\dfrac{\sqrt{5}}{6}\)

\(\cot\widehat{NMK}=\dfrac{KM}{KN}=\dfrac{6\sqrt{5}}{5}\)

Bình luận (0)

Các câu hỏi tương tự
QE
Xem chi tiết
KH
Xem chi tiết
TL
Xem chi tiết
QE
Xem chi tiết
NT
Xem chi tiết
QE
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
NM
Xem chi tiết