Chương I - Hệ thức lượng trong tam giác vuông

QE

Cho tam giác ABC vuông tại A , đường cao AH = 14cm . BH : HC = 1 : 4 . Tính tỉ số lượng giác của góc B

 

 

NL
26 tháng 7 2021 lúc 15:48

\(\dfrac{BH}{HC}=\dfrac{1}{4}\Rightarrow CH=4BH\)

Áp dụng hệ thức lượng: 

\(AH^2=BH.CH\)

\(\Leftrightarrow14^2=BH.4BH\)

\(\Rightarrow BH=7\)

\(\Rightarrow CH=4BH=28\)

Pitago tam giác ABH:

\(AB=\sqrt{BH^2+AH^2}=7\sqrt{5}\)

\(sinB=\dfrac{AH}{AB}=\dfrac{2\sqrt{5}}{5}\)

\(cosB=\dfrac{BH}{AB}=\dfrac{\sqrt{5}}{5}\)

\(tanB=\dfrac{AH}{BH}=2\)

\(cotB=\dfrac{1}{tanB}=\dfrac{1}{2}\)

Bình luận (0)
NL
26 tháng 7 2021 lúc 15:48

undefined

Bình luận (0)
NT
26 tháng 7 2021 lúc 23:23

Ta có: BH:CH=1:4

nên \(CH=4BH\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow4\cdot BH^2=14^2=196\)

\(\Leftrightarrow BH^2=49\)

hay BH=7(cm)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AB^2=14^2+7^2=245\)

hay \(AB=7\sqrt{5}\left(cm\right)\)

Xét ΔABH vuông tại H có

\(\sin\widehat{B}=\dfrac{AH}{AB}=\dfrac{14}{7\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

\(\cos\widehat{B}=\dfrac{HB}{AB}=\dfrac{7}{7\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

\(\tan\widehat{B}=\dfrac{AH}{HB}=\dfrac{14}{7}=2\)

\(\cot\widehat{B}=\dfrac{HB}{AH}=\dfrac{7}{14}=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
QE
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
NM
Xem chi tiết
QA
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết