Ta có: P = A:B
P = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+3}.\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)
P = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}+1}+\dfrac{-3}{\sqrt{x}+1}\)
P = 1 + \(\dfrac{-3}{\sqrt{x}+1}\)
Theo ĐK, x \(\in\) N* \(\Rightarrow x\ge1\)\(\Rightarrow\sqrt{x}\ge1\Rightarrow\sqrt{x}+1\ge2\)\(\Rightarrow\dfrac{1}{\sqrt{x}+1}\le\dfrac{1}{2}\Rightarrow\dfrac{-3}{\sqrt{x}+1}\ge\dfrac{-3}{2}\)\(\Rightarrow1+\dfrac{-3}{\sqrt{x}+1}\ge1+\dfrac{-3}{2}=\dfrac{-1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)(TMĐK)
Vậy Min(P) = \(\dfrac{-1}{2}\Leftrightarrow x=1\)