Chương I : Số hữu tỉ. Số thực

KL

Bài 1: Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\dfrac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}\)

NT
2 tháng 6 2022 lúc 19:44

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\dfrac{b^{2017}\cdot k^{2017}+d^{2017}\cdot k^{2017}}{b^{2017}+d^{2017}}=k^{2017}\)

\(\dfrac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}=\dfrac{\left(bk+dk\right)^{2017}}{\left(b+d\right)^{2017}}=k^{2017}\)

Do đó: \(\dfrac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\dfrac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}\)

Bình luận (0)

Các câu hỏi tương tự
PG
Xem chi tiết
NN
Xem chi tiết
GG
Xem chi tiết
NH
Xem chi tiết
HD
Xem chi tiết
TN
Xem chi tiết
YA
Xem chi tiết
SL
Xem chi tiết
TT
Xem chi tiết