Áp dụng BĐT Bunyacovsky cho hai bộ ba số (a,b,c) và (1,1,1) ta có:
\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2=1\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Ta se cm:
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(ld\right)\Rightarrow3\left(a^2+b^2+c^2\right)\ge1\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}\)