a, Có O là trung điểm của BC
Mà D∈∈(O;1212BC) => OB = OD = OC
=> ∆BDC vuông tại D => CD⊥⊥AB
Tương tự BE⊥⊥AC
b, Xét ∆ABC có K là trực tâm => AK⊥⊥BC
a, Có O là trung điểm của BC
Mà D∈∈(O;1212BC) => OB = OD = OC
=> ∆BDC vuông tại D => CD⊥⊥AB
Tương tự BE⊥⊥AC
b, Xét ∆ABC có K là trực tâm => AK⊥⊥BC
Cho tam giác ABC có ba góc nhọn (AB<AC).Đường tròn tâm 0 đường kính bc cắt ab tại e cắt ac tại f .gọi h là giao điểm của bf và ce.
a)c.m 4 điểm A,E,H,F cùng thuộc 1 đường tròn
b)gọi i là trung điểm của ah .cm:OI vuông góc EF
c)Gọi D là giao điểm AH và BC .cm:HA.HD=HB.HF=HC.HE
Cho tam giác ABC vuông tại A và AB < AC. Từ A, kẻ AH vuông góc với cạnh BC tại H. Trên đoạn thẳng HC lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Gọi O là trung điểm của đoạn thẳng CD, vẽ đường tròn tâm O đường kính CD. Đường tròn (O) vừa vẽ có điểm chung thứ hai với cạnh AC là E. Chứng minh HA = HE và tính số đo của góc OEH.
Giúp mình với mình đang cần gấp lắm ạ
Cho tam giác ABC nhọn vẽ đường tròn tâm O đường kính BC cắt AB, AC theo thứ tự tại D và E a) chứng minh CD vuông góc với AB, BE vuông góc với AC b)gọi K là giao điểm BE và CD. chứng minh AK vuông góc với BC
Cho đường tròn (O) đường kính AB, dây CD vuông góc với AB tại I (IA < IB). Gọi E là giao điểm của tia DA và tia BC; H là hình chiếu vuông góc của Etrên đường thẳng AB.
a) Chứng minh rằng: Bốn điểm A, H, E, C cùng thuộc một đường tròn;
b)Chứng minh rằng:EA. ED = EC. EB;
c) Chứng minh rằng: HC là tiếp tuyến của đường tròn (O)
cho tam giác abc có 3 góc nhọn, vẽ đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. BE và CD cắt nhau tại H
a)Chứng minh IO vuông góc DE
b)AH kéo dài cắt BC ở F. CMR: H là tâm đường tròn nội tiếp ΔDFE
Từ một điểm A ở ngoài đường tròn (O:R) vẽ hai tiếp tuyến AB, AC của đường tròn ( B, C là hai tiếp điểm ).Gọi H là giao điểm của OA và BC a) CM: A, B, O, C cùng thuộc một đường tròn và OA ┴ BC b) Kẻ đường kính CD của đường tròn (O), AD cắt (O) tại E. CM: CE ┴ AD và DA. DE = 4OA . OH c) Kẻ OK ┴ DE tại K, AD cắt BC tại F. Biết R = 6cm và OA bằng 6 căn 5. Tính KF
Cho điểm A nằm ngoài đường tròn (O;R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA ⊥ BC và OA // BD
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE . AD = AH . AO
Giúp em với ạ! Em cảm ơn nhiều!!
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) với B, C là hai tiếp điểm. Vẽ đường kính BD của đường tròn (O), AD cắt (O) tại E. Gọi H là giao điểm của OA và BC, K là trung điểm của ED. a) Chứng minh: A, B, O, C cùng thuộc một đường tròn và OA vuông góc với BC. b) Chứng minh: AE.AD = AC c) Vẽ OK và cắt BC tại F. Chứng minh: FD là tiếp tuyến của đường tròn
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) với B, C là hai tiếp điểm. Vẽ đường kính BD của đường tròn (O), AD cắt (O) tại E. Gọi H là giao điểm của OA và BC, K là trung điểm của ED.
a) Chứng minh: A, B, O, C cùng thuộc một đường tròn và OA vuông góc với BC.
b) Chứng minh: AE.AD = AC
c) Vẽ OK và cắt BC tại F. Chứng minh: FD là tiếp tuyến của đường tròn