HN

Bài 1 : Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng : 

\(\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{a+c-b}+\frac{c^{2016}}{a+b-c}\ge a^{2015}+b^{2015}+c^{2015}\)

Bài 2 : Cho a,b,c > 0 và \(a+b+c\le\frac{3}{2}\). Tìm giá trị nhỏ nhất của :

\(S=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)

 

ML
14 tháng 6 2016 lúc 21:38

Bài 2:

Chứng minh bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)

(bình phương vài lần + biến đổi tương đương)

\(S\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{c^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2}\)

\(t=\left(a+b+c\right)^2\le\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(S\ge\sqrt{t+\frac{81}{t}}=\sqrt{t+\frac{81}{16t}+\frac{1215}{16t}}\ge\sqrt{2\sqrt{t.\frac{81}{16t}}+\frac{1215}{16.\frac{9}{4}}}=\frac{\sqrt{153}}{2}\)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}.\)

Bình luận (0)
VT
15 tháng 6 2016 lúc 1:08

cau 1 su dung bdt tre bu sep la ra

Bình luận (0)

Các câu hỏi tương tự
LB
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
TB
Xem chi tiết
PC
Xem chi tiết
LC
Xem chi tiết
KK
Xem chi tiết
NK
Xem chi tiết
HV
Xem chi tiết