Ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2012}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2011}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)
\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)
\(\Rightarrow A=B\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2013}=1\)
Vậy \(\left(\frac{A}{B}\right)^{2013}=1\).