Chứng minh: \(\frac{y-x}{9}=\frac{z-y}{14}\)
Ta có: \(3\left(x-y\right)=7\left(y-z\right)=5\left(z-x\right)\)
<=> \(\frac{x-y}{\frac{1}{3}}=\frac{y-z}{\frac{1}{7}}=\frac{z-x}{\frac{1}{5}}\)
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{x-y}{\frac{1}{3}}=\frac{y-z}{\frac{1}{7}}=\frac{z-x}{\frac{1}{5}}=\frac{x-y+y-z+z-x}{\frac{1}{3}+\frac{1}{7}+\frac{1}{5}}=0\)
<=> x = y = z
Khi đó: \(\frac{y-x}{9}=0;\frac{z-y}{14}=0\)
Vậy \(\frac{y-x}{9}=\frac{z-y}{14}\)