Cho ba số dương x,y,z thỏa mãn điều kiện xy+yz+xz=1
Tính giá trị của biểu thức A
A= x\(\sqrt{\frac{\left(1+y^2\right)\left(y^2+z^2\right)}{1+x^2}}+\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+x^2}}\)
giải phương trình
a. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
b.\(\sqrt{x-2010}+\sqrt{y-2011}+\sqrt{x+2012}=\frac{1}{2}\left(x+y+z\right)-300\)
a. giải phương trình sau : \(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
b. cho x,y,z là 3 số thỏa mãn : xyz=1 và \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
tính giá trị của biểu thức : \(P=\left(x^{2015}-1\right)\left(y^{2016}-1\right)\left(z^{2017}-1\right)\)
Tim x,y,z :
1)\(\left(2\sqrt{x}-3\right).\left(2+\sqrt{x}\right)+6=0\)
2)\(\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}=0\)
3)\(\sqrt{x^2-4}-2\sqrt{x-2}=0\)
4)\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}.\left(x+y+z\right)\)
5) xy =\(x\sqrt{y-1}+y\sqrt{x-1}\)
6)\(x\sqrt{y-1}+2y\sqrt{x-1}=\frac{3xy}{2}\)
Cho các số x,y,z thỏa mãn ( Chú ý : A^2+B^2+C^2=0 <=> A=B=C=0)
a, \(\left(2x-y\right)^2+\left(y-2\right)^2+\sqrt{x+y+z}=0\)
b, \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
Rút gọn:
a. \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\) (với x > 0, y > 0)
b.\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) ( với x > 0 )
c. \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\) ( với x > -2)
Rút gon
A = \(\left(\sqrt{6x^2-12xy^2+6y^3}+\sqrt{24x^2y}\right):\sqrt{6y}\)
B = \(\frac{\sqrt{343xy^3\left(x-y\right)^2}}{\sqrt{28xy}}\) với x, y>0 , x<y
C= \(\sqrt{\frac{m}{1-2x+x^2}}:\frac{\sqrt{81}}{4m^3\left(x^2-2x+1\right)}\) với m>0 , m khác 1
B=\(\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\frac{1-x}{1-\sqrt{x}}\)
giúp với cần gấp lắm
Tính giá trị của biểu thức sau:
\(B=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\frac{2x^2}{\sqrt{x}}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}+\frac{3\sqrt{xy}-3y}{x-y}\) tại x=1997; y=30303