Bài 2: Giới hạn của hàm số

TT

Bài 1

a. \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3-x^2}-x\right)\)

b. \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[3]{x^3+5x^2}-\sqrt[3]{x^3+8x}\right)\)

c. \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[3]{x^3+1}-x\right)\)

Bài 2

a. \(\lim\limits_{x\rightarrow1^-}\left(\frac{2}{x^2-1}-\frac{1}{x-1}\right)\)

b. \(\lim\limits_{x\rightarrow1^+}\left(\frac{1}{1-x}-\frac{3}{1-x^3}\right)\)

c. \(\lim\limits_{x\rightarrow2^+}\left(\frac{1}{x^2-3x+2}-\frac{1}{x^2-5x+6}\right)\)

NL
15 tháng 3 2020 lúc 22:44

\(a=\lim\limits_{x\rightarrow-\infty}\left(\frac{-x^2}{\sqrt[3]{\left(x^3-x^2\right)^2}+x\sqrt[3]{x^3-x^2}+x^2}\right)=\lim\limits_{x\rightarrow-\infty}\left(\frac{-1}{\sqrt[3]{\left(1-\frac{1}{x}\right)^3}+\sqrt[3]{1-\frac{1}{x}}+1}\right)=-\frac{1}{3}\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{5x^2-8x}{\sqrt[3]{\left(x^3+5x^2\right)^2}+\sqrt[3]{\left(x^3+5x^2\right)\left(x^3+8x\right)}+\sqrt[3]{\left(x^3+8x\right)^2}}\)

\(=\lim\limits_{x\rightarrow+\infty}\frac{5-\frac{8}{x}}{\sqrt[3]{\left(1+\frac{5}{x}\right)^2}+\sqrt[3]{\left(1+\frac{5}{x}\right)\left(1+\frac{8}{x^2}\right)}+\sqrt[3]{\left(1+\frac{8}{x^2}\right)^2}}=\frac{5}{3}\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{1}{\sqrt[3]{\left(x^3+1\right)^2}+x\sqrt[3]{x^3+1}+x^2}=\frac{1}{+\infty}=0\)

Bài 2:

\(a=\lim\limits_{x\rightarrow1^-}\left(\frac{1-x}{\left(x-1\right)\left(x+1\right)}\right)=\lim\limits_{x\rightarrow1^-}\frac{-1}{x+1}=-\frac{1}{2}\)

\(b=\lim\limits_{x\rightarrow1^+}\left(\frac{x^2+x+1-3}{\left(1-x\right)\left(x^2+x+1\right)}\right)=\lim\limits_{x\rightarrow1^+}\frac{\left(x-1\right)\left(x+2\right)}{\left(1-x\right)\left(x^2+x+1\right)}=\lim\limits_{x\rightarrow1^+}\frac{-x-2}{x^2+x+1}=-1\)

\(c=\lim\limits_{x\rightarrow2^+}\left(\frac{1}{\left(x-1\right)\left(x-2\right)}-\frac{1}{\left(x-2\right)\left(x-3\right)}\right)=\lim\limits_{x\rightarrow2^+}\frac{-2}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)

Do \(x\rightarrow2^+\Rightarrow x>2\Rightarrow x-2>0\Rightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)\rightarrow0^-\)

\(\Rightarrow\lim\limits_{x\rightarrow2^+}\frac{-2}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=+\infty\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
DD
Xem chi tiết
JP
Xem chi tiết
HH
Xem chi tiết
SK
Xem chi tiết
LN
Xem chi tiết
TT
Xem chi tiết