\(B=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{2021.2014}\)
\(\Rightarrow B=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2021}-\dfrac{1}{2014}\right)\)
\(\Rightarrow B=\dfrac{1}{3}.\left(1-\dfrac{1}{2014}\right)\)
\(\Rightarrow B=\dfrac{1}{3}.\dfrac{2013}{2014}=\dfrac{671}{2014}\)
\(B=\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{2021\cdot2024}\\ =\dfrac{1}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{2021\cdot2024}\right)\\ =\dfrac{1}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2024}\right)\\ =\dfrac{1}{3}\cdot\left(1-\dfrac{1}{2024}\right)\\ =\dfrac{1}{3}\cdot\dfrac{2023}{2024}\\ =\dfrac{2023}{6072}\)
\(B=\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{2014\cdot2021}\)
\(3B=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{2014\cdot2021}\)
\(3B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2014}-\dfrac{1}{2021}\)
\(3B=1-\dfrac{1}{2021}\)
\(B=\dfrac{1-\dfrac{1}{2021}}{3}=\dfrac{\dfrac{2020}{2021}}{3}=\dfrac{2020}{6063}\)
Sửa \(\dfrac{1}{2021.2014}\rightarrow\dfrac{1}{2013.2014}\)
Hoặc \(\dfrac{1}{2021.2014}\rightarrow\dfrac{1}{2021.2024}\)