\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{x}\left(1+2+...+x\right)\)
\(=1+\frac{1}{2}\cdot\frac{2\cdot3}{2}+\frac{1}{3}\cdot\frac{3\cdot4}{2}+\frac{1}{4}+\frac{4\cdot5}{2}+...+\frac{1}{x}\cdot\frac{x\left(x+1\right)}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{x+1}{2}\)
\(=\frac{1}{2}\left(2+3+4+...+x+1\right)\)
\(=\frac{1}{2}\cdot\frac{\left(x+1+2\right)\left(x+1-2+1\right)}{2}\)
\(=\frac{1}{2}\cdot\frac{x\left(x+3\right)}{2}=\frac{x\left(x+3\right)}{4}\).