QN

B1 : Rút gọn :

\(6xy.\sqrt{\frac{9x^2}{16y^2}}\) \(\left(x< 0;y\ne0\right)\)

\(\sqrt{\frac{4+20a+25a^2}{b^4}}\)\(\left(b< 0;a\ge\frac{-2}{5}\right)\)

\(\left(m-n\right).\sqrt{\frac{m-n}{\left(m-n\right)^2}}\)\(\left(0< m< n\right)\)

B2 : Tính :

\(1.\left(2\sqrt{3}-\sqrt{12}\right):5\sqrt{3}\)

\(2.\sqrt{\frac{317^2-302^2}{1013^2-1012^2}}\)

\(3.\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{75}\)

\(4.\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)

MN
4 tháng 8 2020 lúc 21:15

Bài 1 :

\(6xy\cdot\sqrt{\frac{9x^2}{16y^2}}=6xy\cdot\frac{3x}{4y}=\frac{18x^2y}{4y}=\frac{9}{2}x^2\)

\(\sqrt{\frac{4+20a+25a^2}{b^4}}=\sqrt{\frac{\left(2+5a\right)^2}{\left(b^2\right)^2}}=\frac{2+5a}{b^2}\)

\(\left(m-n\right).\sqrt{\frac{m-n}{\left(m-n\right)^2}}=\sqrt{\left(m-n\right)^2}\cdot\sqrt{\frac{1}{m-n}}=\sqrt{\frac{\left(m-n\right)^2}{m-n}}=\sqrt{m-n}\)

Bài 2 : 

1. \(\left(2\sqrt{3}-\sqrt{12}\right):5\sqrt{3}=\left(2\sqrt{3}-2\sqrt{3}\right):5\sqrt{3}=0:5\sqrt{3}=0\)

2. \(\sqrt{\frac{317^2-302^2}{1013^2-1012^2}}=\frac{\sqrt{\left(317+302\right)\left(317-302\right)}}{\sqrt{\left(1013+1012\right)\left(1013-1012\right)}}=\frac{\sqrt{619}\cdot\sqrt{15}}{\sqrt{2025}}=\sqrt{\frac{619}{135}}\)(check lại)

3. \(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{75}\)

\(=\sqrt{27}\left(1-\sqrt{3}\right):15\sqrt{3}\)

\(=3\sqrt{3}\left(1-\sqrt{3}\right):15\sqrt{3}\)

\(=\frac{1-\sqrt{3}}{5}\)

4.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\frac{5}{\sqrt{5}}+\frac{\sqrt{20}}{2}-\frac{\frac{5}{4}\cdot2}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\sqrt{5}+\frac{2\sqrt{5}}{2}-\frac{\frac{5}{2}}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\sqrt{5}+\sqrt{5}+\frac{\sqrt{5}}{2}+\sqrt{5}\right):2\sqrt{5}\)

\(=\frac{7}{2}\sqrt{5}:2\sqrt{5}\)

\(=\frac{7}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HN
Xem chi tiết
TP
Xem chi tiết
HK
Xem chi tiết
BV
Xem chi tiết
NL
Xem chi tiết
FL
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết