\(A\left(x\right)+B\left(x\right)=\left(-2x^3+x^2-2x+3\right)+\left(x^3+4x^2-3x-2\right)\\ =-2x^3+x^2-2x+3+x^3+4x^2-3x-2\\ =\left(-2x^3+x^3\right)+\left(x^2+4x^2\right)+\left(-2x-3x\right)+\left(3-2\right)\\ =-x^3+5x^2-5x+1\)
`A(x) = -2x^3 + x^2 - 2x + 3`
`B(x) = x^3 + 4x^2 - 3x -2`
` A(x) + B(x) = (-2x^3 + x^2 - 2x + 3) + (x^3 + 4x^2 - 3x -2)`
` A(x) + B(x) = -2x^3 + x^2 - 2x + 3 + x^3 + 4x^2 - 3x -2`
` A(x) + B(x) = -x^3 -3x^2 -5x +1`
`A(x)+B(x)= -2x^3 +x^2 - 2x +3 +x^3 +4x^2 -3x -2`
`A(x) +B(x) = (x^3 -2x^3 ) +(x^2 +4x^2)+(-3x-2x)+(3-2)`
`A(x)+B(x) = -x^3 +5x^2 -5x+1`