1.M=D1.D2.......Dn là số nguyên tố đầu tiên:
-Chứng minh:M-1 ko là số chính phương
2.Chứng minh n! +2015 ko phải là số chính phương với n là số tự nhiên
giúp mk nha ai nhanh mk k
a)Chứng minh rằng một số chính phương chia hết cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
c)Các số sau có là số chính phương không?
1 . Tìm số nguyên tố xy (x>y>0) sao cho: xy - yx là số chính phương.
2. chứng minh
a, tổng ba số cp liên phương liên tiếp chia 3 dư 2.
b, a=1^2 +2^2+3^2+4^2+...+56^2 không là số chính phương.
c, tổng bình phương của 2 số lẻ bất kì ko phải là số chính phương.
3, tìm x,y để A=xxyy là số chính phương (xxyy có gach trên đầu nhé)
Cho A=1+5+......+5^2015
a, chứng tỏ rằng 4A+1 là lũy thừa của 5
4A+1 có phải là số chính phương không?
A có phải là số chính phương không?
b, Tìm x,y thuộc n biết biết 4A+1=5^x ; 4A+1=25^y
c,Chứng minh A chia hết cho 6. tìm số dư của x khi chia cho 31
a) Chứng minh rằng: mọi n \(\in\)N ta có \(2.7^n+1\) chia hết cho 3
b) tìm số chính phương có 4 chữ số trong đó chữ số hàng nghìn và chữ số hàng đơn vị giống nhau, và số đó là bình phương của số 5n+3
Các bạn giải chi tiết nhé! Ai nhanh nhất mình k
1,Một số chia 12 dư 2 chia 12 dư 5. Hỏi chia 84 dư bao nhiêu?
2,Cho 2 số nguyên tố cùng nhau a,b Chứng tỏ 2 số 11a+2b và 18a+5b hoặc nguyên tố cùng nhau hoặc có ước chung là 19
3,Tìm các chữ số a,b,c,d sao cho các số a,ab,cd,abcd là các số chính phương
1)Có bao nhiêu ước là số chính phương của số
\(A=1^9.2^8.3^7.4^6.5^5.6^4.7^3.8^29^1\)
2)Tìm tất cả các số tự nhiên n sao cho các số n+50 va n-50 là số chính phương.
3)Tìm tất cả các số nguyên tố p sao cho 17p+1 là số chính phương.
4)a)Chứng minh rằng một số nguyên biểu diễn dưới dạng hai số chính phương khi và chỉ khi nó là một số lẻ hoặc chia hết cho 4.
b)Có bao nhiêu số tự nhiên từ 1 đến 2016 là hiệu của 2 số chính phương
1.Tìm số nguyên tố ab sao cho ab+ba là số chính phương.
2. Chứng tỏ các số sau không phải số chính phương:
a, abcabc
b, ababab
Bài 1:
a) Chứng minh rằng số chính phương lẻ thì chia 8 dư 1
b) Chứng tỏ rằng nếu 2n + 1 và 3n + 1 là các số chính phương lẻ thì n chia hết cho 40 ( n thuộc N*)