ta có : \(A=n^{1988}+n^{1987}+1\)
\(\Rightarrow A=n^2\left[\left(n^{662}\right)^3-1\right]+n\left[\left(n^{662}\right)^3-1\right]+\left(n^2+n+1\right)\)
mà \(\left(n^{662}\right)^3-1⋮\left(n^3-1\right)\)và \(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\Rightarrow n^3-1⋮\left(n^2+n+1\right)\)
nên \(\left(n^{662}\right)^3-1⋮\left(n^2+n+1\right)\)
\(\Rightarrow A⋮n^2+n+1\)
Mặt khác : A là số nguyên tố
=>\(\orbr{\begin{cases}n^2+n+1=1\\n^2+n+1=n^{1988}+n^{1987}+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}n\left(n+1\right)=0\\n^2+n=n^{1986}\left(n^2+n\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}n=0;n=-1\\n\left(n+1\right)\left(n^{1986}-1\right)=0\end{cases}}\)
=> \(n\left(n+1\right)\left(n^{1986}-1\right)=0\) vì n nguyên dương
\(\Rightarrow n^{1986}-1=0\Rightarrow n=1\) (thỏa mãn)
thử lại : thay n=1 vào A ta đc : A= 1+1+1=3 là số nguyên tố
Vậy n=1 thì A là số nguyên tố