NN

Aloalo giup minh voi cac ban oi!

Tinh gia tri bieu thuc sau ;A=1^2+2^2+3^2+....+n^2 (nEN).

 

 

 

 

DH
2 tháng 6 2021 lúc 16:55

Ta sẽ chứng minh \(1+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)(*).

Với \(n=1\)thì: \(\frac{1\left(1+1\right)\left(2.1+1\right)}{6}=1\)do đó (*) đúng với \(n=1\).

GIả sử (*) đúng với \(n=k\ge1\), tức là \(1+2^2+3^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\).

Ta sẽ chứng minh (*) đúng với \(n=k+1\), tức là \(1+2^2+3^2+...+k^2+\left(k+1\right)^2=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\).

Thật vậy, ta có: 

\(1+2^2+3^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\frac{6\left(k+1\right)^2}{6}\)

\(=\frac{\left(k+1\right)\left(2k^2+k+6k+6\right)}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

Suy ra (*) đúng với \(n=k+1\).

Theo nguyên lí quy nạp toán học, (*) đúng với \(n\inℕ\).

Vậy \(1+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\).

Bình luận (0)
 Khách vãng lai đã xóa
XO
2 tháng 6 2021 lúc 16:58

Ta có A = 1.1 + 2.2 + 3.3 + ... + n.n 

= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + n.(n + 1 - 1) 

= 1.2 + 2.3 + 3.4 + .... + n.(n + 1) - (1 + 2 + 3 + ... + n) 

= 1.2 + 2.3 + 3.4 + .... + n.(n + 1) - n(n + 1) : 2

Đặt B = 1.2 + 2.3 + 3.4 + .... + n(n + 1)

=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + .... + n.(n + 1).3

= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + n.(n + 1).[(n + 2) - (n - 1)]

= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + n(n + 1)(n + 2) - (n - 1)n(n + 1)

= n(n + 1)(n + 2)

=> B = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Khi đó \(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}=n\left(n+1\right)\left(\frac{n+2}{3}-\frac{1}{2}\right)\)

\(=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
ND
Xem chi tiết
PH
Xem chi tiết
NN
Xem chi tiết
DM
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
DL
Xem chi tiết