`(x-2)^2=1`
`(x-2)^2=`\(\left(\pm1\right)^2\)
`@TH1:`
`x-2=1`
`x=1+2`
`x=3`
`@TH2:`
`x-2=-1`
`x=-1+2`
`x=1`
Vậy `x = {3;1}`
\(TH1\left(x-2\right)^2=1^2\\ x-2=1\\ x=3\\ TH2\left(x-2\right)^2=\left(-1\right)^2\\ x-2=-1\\ x=1\)
`(x-2)^2=1`
`(x-2)^2=1^2` hoặc `(x-2)^2=(-1)^2`
`x-2=1` hoặc `x-2=-1`
`x=3` hoặc `x=1`
\(\left(x-2\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
`a,`
`(x−2)^2=1`
`=>(x-2)^2=1^2`
`TH1`
`x-2=1`
`=>x=1+2`
`=>x=3`
`TH2`
`x-2=-1`
`=>x=-1+2`
`=>x=1`
a) \(\left(x-2\right)^2=1\)
\(\left(x-2\right)^2=1^2\)
\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)