ĐKXĐ: \(y\ge0;y\ne4;9\)
\(A=\left(\frac{8\sqrt{y}-4y+8y}{\left(2+\sqrt{y}\right)\left(2-\sqrt{y}\right)}\right):\left(\frac{\sqrt{y}-1}{\sqrt{y}\left(\sqrt{y}-2\right)}-\frac{2\left(\sqrt{y}-2\right)}{\sqrt{y}\left(\sqrt{y}-2\right)}\right)\)
\(=\left(\frac{4\sqrt{y}\left(2+\sqrt{y}\right)}{\left(2+\sqrt{y}\right)\left(2-\sqrt{y}\right)}\right):\left(\frac{-\sqrt{y}+3}{\sqrt{y}\left(\sqrt{y}-2\right)}\right)\)
\(=\left(\frac{4\sqrt{y}}{2-\sqrt{y}}\right):\left(\frac{\sqrt{y}-3}{\sqrt{y}\left(2-\sqrt{y}\right)}\right)\)
\(=\frac{4\sqrt{y}}{\left(2-\sqrt{y}\right)}.\frac{\sqrt{y}\left(2-\sqrt{y}\right)}{\left(\sqrt{y}-3\right)}=\frac{4y}{\sqrt{y}-3}\)
\(A=-2\Leftrightarrow\frac{4y}{\sqrt{y}-3}=-2\)
\(\Rightarrow2y=-\sqrt{y}+3\Rightarrow2y+\sqrt{y}-3=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{y}=1\\\sqrt{y}=-\frac{3}{2}< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow y=1\)