\(=\frac{1+a}{2\sqrt{a}-a}.\frac{2\sqrt{a}-a}{-\left(1+\sqrt{a}\right)}=\frac{-\left(1+a\right)}{1+\sqrt{a}}\)
\(=\frac{1+a}{2\sqrt{a}-a}.\frac{2\sqrt{a}-a}{-\left(1+\sqrt{a}\right)}=\frac{-\left(1+a\right)}{1+\sqrt{a}}\)
BT rút gọn với ĐK: a>0 và a khác 1:
M = \(\left(\frac{2+\sqrt{a}}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right)\)\(\frac{a\sqrt{a}+a-\sqrt{a}-1}{\sqrt{a}}\)
N = \(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\)\(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)
Rút gọn BT P=\(\left(\frac{1}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\frac{2}{\sqrt{1-a^2}}+1\right)\)
Bài 1:Rút gọn
\(a,\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(b,\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(c,\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)\times\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\left(a\ne1;a\ge0\right)\)
Bài 2: Rút gọn biểu thức
\(P=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
Rút gọn (ĐKXĐ)
\(A=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{1}{a-1}\right):\frac{a}{2+2\sqrt{a}}\)
Rút gọn các biểu thức
\(A=\left(1+\frac{\sqrt{a}-1}{a-\sqrt{a}}\right):\left(\frac{a+\sqrt{a}}{a-1}\frac{\sqrt{a}}{a-\sqrt{a}}\right)\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)
\(C=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{1}{a-1}\right):\frac{a}{2+2\sqrt{a}}\)
Rút gọn biểu thức:
A= \(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
1.\(\sqrt{2}\left(\sqrt{50}-3\sqrt{2}\right):4-\sqrt{16}\)6
2. rút gọn
\(\left(\sqrt{\frac{a}{2}}-\frac{1}{2\sqrt{a}}\right)\left(\right)\frac{a-\sqrt{a}}{\sqrt{a+1}}-\frac{a+\sqrt{a}}{\sqrt{a-1}}\left(\right)\)
Rút gọn biểu thức:
A= \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
Rút gọn biểu thức:
A= \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)