trừ 2 về đi bạn , cả 2 câu đều k khó đâu
a)x=144 , y=36
b)x=9 , y=1
cần lời giải thì nói mình
trừ 2 về đi bạn , cả 2 câu đều k khó đâu
a)x=144 , y=36
b)x=9 , y=1
cần lời giải thì nói mình
Giai hệ phương trình:
a) \(\int^{4\left(x+y\right)=5\left(x-y\right)}_{\frac{40}{x+y}+\frac{40}{x-y}=9}\)
b) \(\int^{\left|x-2\right|+2\left|y-1\right|=9}_{x+\left|y-1\right|=-1}\)
Giải hpt :
\(\int^{\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}}_{3xy=x+y+1}\)
Giải hpt :
\(\int^{x+y^2+z^3=14}_{\left(\frac{1}{2x}+\frac{1}{3y}+\frac{1}{6z}\right)\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{6}\right)=1}\)
( trong đó x ; y; z là các số dương )
giải hpt \(\int^{\frac{x}{y}-\frac{x}{y+12}=1}_{\frac{x}{y-12}-\frac{x}{y}=2}\)
\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{3}{2}\Rightarrow2\left(x+y\right)=3xy\)
\(x^2+y^2=5\Leftrightarrow\left(x+y\right)^2-2xy=5\)
Đặt x+y=u; xy=v, ta có hệ
\(\int^{2\left(x+y\right)-3xy=0}_{\left(x+y\right)^2-2xy=5}\Leftrightarrow\int^{2u-3v=0}_{u^2-2v=5}\Leftrightarrow u=3;v=2\)hoặc \(u=-\frac{5}{3};v=-\frac{10}{9}\)
đến đây dùng viet, x và y là nghiệm của 2 phương trình \(X^2-3X+2=0\) hoặc \(X^2+\frac{5}{3}X-\frac{10}{9}=0\). Giải ra được nghiệm (x;y) là \(\left(1;2\right),\left(2;1\right),\left(\frac{-5+\sqrt{65}}{6};\frac{-5-\sqrt{65}}{6}\right),\left(\frac{-5-\sqrt{65}}{6};\frac{-5+\sqrt{65}}{6}\right)\)
\(\int^{\left(x-1\right)^2+y^2=\sqrt[3]{x\left(2x+1\right)}}_{3x^2-x+\frac{1}{2}=y\sqrt{x^2+x}}\) giải hpt.............
giải hệ phương trình ;
\(\hept{\begin{cases}4\left(x+y\right)-5\left(x-y\right)=0\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)
1. Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}\frac{x}{y}-\frac{x}{y+12}=1\\\frac{x}{y-2}-\frac{x}{y}=2\end{cases}}\) b) \(\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)
c) \(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\) d) \(\hept{\begin{cases}x+y+|x|=25\\x-y+|y|=30\end{cases}}\)
2. Tìm các giá trị của m để nghiệm của hệ phương trình sau là các số dương: \(\hept{\begin{cases}x-y=2\\mx+y=3\end{cases}}\)
Giúp với mn ơi
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)