\(x^2+y^2-x+6y+10\)
=>\(\left(x^2-2\times\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
=>\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) (Với mọi x)
\(\left(y+3\right)^2\ge0\) (Với mọi x)
=>\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\) (Với mọi x)
Dấu "=" xảy ra <=>\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2=0\)
=>\(x=\frac{1}{2}\) và \(y=-3\)
Vậy GTNN của bt =3 khi và chỉ khi x=\(\frac{1}{2}\) và \(y=-3\)