do những số đó bé hơn 1 nên cộng lại vẫn bé hơn 1
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ..+ \(\dfrac{1}{55}\)+ \(\dfrac{1}{66}\)
A = 2 \(\times\) ( \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) +...+ \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\))
A = 2 \(\times\) ( \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+ \(\dfrac{1}{5.6}\) +...+ \(\dfrac{1}{10.11}\)+ \(\dfrac{1}{11.12}\))
A = 2 \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) +...+ \(\dfrac{1}{10}\) - \(\dfrac{1}{11}\)+ \(\dfrac{1}{11}\) - \(\dfrac{1}{12}\))
A = 2 \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{12}\))
A = 1 - \(\dfrac{1}{6}\) < 1
Vậy A = \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ...+ \(\dfrac{1}{55}\)+ \(\dfrac{1}{66}\) < 1