Violympic toán 9

TG

ai đó giải hộ mk 3 bài này vs

Giải phương trình:

\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)

NL
28 tháng 5 2019 lúc 22:38

ĐKXĐ: \(x>2009;y>2010;z>2011\)

\(\Leftrightarrow\frac{1}{4}-\frac{\sqrt{x-2009}-1}{x-2009}+\frac{1}{4}-\frac{\sqrt{y-2010}-1}{y-2010}+\frac{1}{4}-\frac{\sqrt{z-2011}-1}{z-2011}=0\)

\(\Leftrightarrow\frac{x-2009-4\sqrt{x-2009}+4}{4\left(x-2009\right)}+\frac{y-2010-4\sqrt{y-2010}+4}{4\left(y-2010\right)}+\frac{z-2011-4\sqrt{z-2011}+4}{4\left(z-2011\right)}=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x-2009}-2\right)^2}{x-2009}+\frac{\left(\sqrt{y-2010}-2\right)^2}{y-2010}+\frac{\left(\sqrt{z-2011}-2\right)^2}{z-2011}=0\)

Do ĐKXĐ nên các mẫu số đều dương nên các hạng tử đều ko âm

Vậy đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x-2009}-2=0\\\sqrt{y-2010}-2=0\\\sqrt{z-2011}-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2013\\y=2014\\z=2015\end{matrix}\right.\)

Bình luận (1)

Các câu hỏi tương tự
HB
Xem chi tiết
TT
Xem chi tiết
KA
Xem chi tiết
AN
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết
DT
Xem chi tiết
LS
Xem chi tiết
VD
Xem chi tiết