Violympic toán 9

TT

Giải phương trình: \(\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{\sqrt{z-2011}-1}{z-2011}=\dfrac{3}{4}\)

H24
1 tháng 3 2018 lúc 0:09

\(\Leftrightarrow\dfrac{4\sqrt{x-2009}-4}{x-2009}-1+\dfrac{4\sqrt{x-2009}-4}{x-2009}-1+\dfrac{4\sqrt{x-2009}-4}{x-2009}-1=0\)\(\Leftrightarrow-\dfrac{\left(\sqrt{x-2009}-2\right)^2}{x-2009}-\dfrac{\left(\sqrt{y-2010}-2\right)^2}{y-2010}-\dfrac{\left(\sqrt{z-2011}-2\right)^2}{z-2011}=0\)

VT <=0 đẳng thức khi và chỉ khi \(\left\{{}\begin{matrix}x-2009=4=>x=2013\\y=2014\\z=2015\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
KA
Xem chi tiết
AN
Xem chi tiết
DT
Xem chi tiết
TG
Xem chi tiết
HB
Xem chi tiết
TT
Xem chi tiết
BA
Xem chi tiết
HN
Xem chi tiết
TT
Xem chi tiết