nâng cao và phát triển toán 9 tập 1 :)
bài thứ : \(109\left(1\right)\)chuyên đề bất đẳng thức
nâng cao và phát triển toán 9 tập 1 :)
bài thứ : \(109\left(1\right)\)chuyên đề bất đẳng thức
cho a,b,c,d >=0 tìm min
\(\frac{a}{b+c+d}+\frac{b+c+d}{a}+\frac{b}{a+c+d}+\frac{a+c+d}{b}+\frac{a+b+d}{c}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)+\(\frac{a+b+c}{d}\)
tìm min M biết
\(M=\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\)với a,b,c,d là các số thực dương
Cho a, b, c, d > 0. Tìm Min của:
\(S=\text{Σ}\frac{a}{b+c+d}+\text{Σ}\frac{b+c+d}{a}\)
Cho a;b;c>0 Tìm Min:
\(4abc\left(\frac{1}{\left(a+b\right)^2c}+\frac{1}{\left(b+c\right)^2a}+\frac{1}{\left(c+a\right)^2b}\right)+\frac{c+a}{b}+\frac{b+c}{a}+\frac{a+b}{c}\ge9\)
Tìm Max: \(\frac{433}{17}\sqrt{x-x^2}+143\sqrt{x+x^2}\)với 0<x<1
Tìm giá trị nhỏ nhất của
\(M=\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\) với a,b,c,d>0
Giúp với, mai nộp rồi!
Cho a,b,c,d>0. Tìm GTNN của:
\(S=\frac{a-d}{b+d}+\frac{d-b}{c+b}+\frac{b-c}{a+c}+\frac{c-a}{d+a}\)
Câu 1: Có thể có hay không một tam giác có thể chia thành 5 tam giác bằng nhau?
Câu 2: Cho a,b,c,d>0. Tìm giá trị nhỏ nhất của biểu thức:
\(\)\(S=\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{a+b+d}+\frac{d}{a+b+c}+\frac{b+c+d}{a}+\frac{c+d+a}{b}+\frac{a+b+d}{c}+\frac{d}{a+b+c}\)
cho a, b, c, d >0 tìm GTNN của A= \(\frac{a+b}{b+c+d}+\frac{b+c}{c+d+a}+\frac{c+d}{d+a+b}+\frac{d+a}{a+b+c}\)
Cho a, b, c, d > 0. Tìm giá trị nhỏ nhất của biểu thức:
\(S=\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{a+b+d}+\frac{d}{a+b+c}+\frac{b+c+d}{a}+\frac{c+a+d}{b}+\frac{d+a+b}{c}\)
\(+\frac{a+b+c}{d}\)