ZZ

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+...+\frac{1}{531441}\)

H24
22 tháng 5 2016 lúc 10:49

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{531441}\)

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{12}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{11}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{11}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{12}}\right)\)

\(2A=1-\frac{1}{3^{12}}\)

\(2A=\frac{531440}{531441}\)

\(A=\frac{531440}{531441}\div2\)

\(A=\frac{265720}{531441}\)

Chúc bạn học tốt!!!!!!!!

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DB
Xem chi tiết
PD
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
NM
Xem chi tiết
CA
Xem chi tiết
OO
Xem chi tiết
VA
Xem chi tiết