Đặt \(B=1+2+2^2+2^3+...+2^{2009}\)
\(\Rightarrow2B=2+2^2+2^3+2^4+...+2^{2010}\)
\(\Rightarrow2B-B=\left(2+2^2+2^3+2^4+...+2^{2010}\right)-\left(1+2+2^2+2^3+...+2^{2009}\right)\)
\(\Rightarrow B=2^{2010}-1\)
\(\Rightarrow A=\dfrac{1+2+2^2+2^3+...+2^{2009}}{2^{2010}-1}\)
\(=\dfrac{2^{2010}-1}{2^{2010}-1}\)
\(=1\)