NL

a,Cho \(a,b,c\in\left[0;1\right].CMR:\)

\(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{3}{3+abc}\)

b,Cho a,b,c>0 thỏa mãn:abc=1

\(CMR:\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)

 

 
ND
16 tháng 10 2020 lúc 21:38

Xí trước phần b

Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(c+a\right)}+\frac{abc}{c^3\left(a+b\right)}\)

\(=\frac{bc}{a^2b+ca^2}+\frac{ca}{b^2c+ab^2}+\frac{ab}{c^2a+bc^2}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2bc^2}+\frac{c^2a^2}{ab^2c^2+a^2b^2c}+\frac{a^2b^2}{a^2bc^2+ab^2c^2}\)

\(=\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{bc+ab}+\frac{\left(ab\right)^2}{ca+bc}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
16 tháng 10 2020 lúc 21:42

Cách làm khác của phần b ngắn gọn hơn:)

Ta có; \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(c+a\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)

\(=\frac{\left(\frac{1}{a}\right)^2}{ab+ca}+\frac{\left(\frac{1}{b}\right)^2}{bc+ab}+\frac{\left(\frac{1}{c}\right)^2}{ca+bc}\)

\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(\frac{ab+bc+ca}{abc}\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
ND
16 tháng 10 2020 lúc 21:59

Phần a không thể CM toàn bộ bằng BĐT rồi, bắt buộc vẫn phải sử dụng biến đổi tương đương

Ta có: \(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{\left(1+1+1\right)^2}{a+3b+b+3c+c+3a}=\frac{9}{4\left(a+b+c\right)}\)

Bây giờ ta cần CM: \(\frac{9}{4\left(a+b+c\right)}\ge\frac{3}{3+abc}\)\(\left(0\right)\)

\(\Leftrightarrow9\left(3+abc\right)\ge12\left(a+b+c\right)\)

\(\Leftrightarrow9+3abc\ge4\left(a+b+c\right)\)

Đặt \(\hept{\begin{cases}a=1-x\\b=1-y\\c=1-z\end{cases}}\Rightarrow\left(x,y,z\right)\in\left[0,1\right]\)

Thay vào ta được: \(9+3\left(1-x\right)\left(1-y\right)\left(1-z\right)\ge4\left(3-x-y-z\right)\)

\(\Leftrightarrow9+3-3\left(x+y+z\right)+3\left(xy+yz+zx\right)-3xyz\ge12-4\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z+3\left(xy+yz+zx\right)-3xyz\ge0\) \(\left(1\right)\)

Lại có: \(\hept{\begin{cases}x+y+z\ge3\sqrt[3]{xyz}\ge3xyz\\3\left(xy+yz+zx\right)\ge3\sqrt[3]{\left(xyz\right)^2}\ge9xyz\end{cases}}\) vì \(\left(x,y,z\right)\in\left[0,1\right]\)

\(\left(1\right)\ge3xyz+9xyz-3xyz=9xyz\ge0\left(\forall x,y,z\right)\)

=> (1) luôn đúng

=> (0) luôn đúng

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NL
Xem chi tiết
VT
Xem chi tiết
QT
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
TM
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
MC
Xem chi tiết