LD

a/\(Cho\) \(a,b\) \(\ne0\) \(thõa\) \(mãn\) \(2a=3b\) .Tính giá trị của biểu thức:\(M=\dfrac{a^3-2ab^2+b^3}{a^2b+ab^2+b^3}\)

b/Chứng minh một số tự nhiên có tổng các chữ số là 20142015 không phải là số chính phương

TN
12 tháng 6 2021 lúc 16:28

a/ Ta có: `2a = 3b => a/3 = b/2`

Đặt `a/3 = b/2 = k`   \(\left(k\ne0\right)\)

`=> a = 3k ; b = 2k`

`=> M =`\(\dfrac{\left(3k\right)^3-2.3k.\left(2k\right)^2+\left(2k\right)^3}{\left(3k\right)^2.2k+3k.\left(2k\right)^2+\left(2k\right)^3}=\dfrac{27k^3-24k^3+8k^3}{18k^3+12k^3+8k^3}=\dfrac{11k^3}{38k^3}=\dfrac{11}{38}\)

Vậy `M = 11/38`.

b/ Giả sử tồn tại số chính phương `a^2` có tổng các số tự nhiên là 20142015

Vì \(20142015⋮3\) nên \(a^2⋮3\)

\(\Rightarrow a^2⋮3^2\)

\(\Rightarrow a^2⋮9\)

Mà \(20142015⋮9̸\Rightarrow a^2⋮9̸\) (vô lí)

`=>` Không tồn tại số chính phương `a^2` nào có tổng các số tự nhiên là 20142015

\(\Rightarrow\) 1 số tự nhiên có tổng các chữ số là `20142015` không phải là số chính phương   (đpcm)

Bình luận (0)

Các câu hỏi tương tự
ST
Xem chi tiết
TM
Xem chi tiết
PL
Xem chi tiết
LB
Xem chi tiết
KT
Xem chi tiết
KI
Xem chi tiết
LP
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết